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ABSTRACT

Feedback is a common problem in teleconferencing systems.
Typical usage of an adaptive filter can be effective for feed-
back reduction but it relies on the presence of such a filter on
the side of the far speaker in order to reduce feedback on the
side of the near speaker. In order to avoid this reliance on the
far speaker’s setup, we can use an adaptive filter on the side
of the near speaker. Unfortunately, due to non-linear speech
coding typically used during speech transmission, these fil-
ters perform poorly in this situation. In this paper, we present
a novel probabilistic method, using a non-negative convolu-
tive decomposition of spectrogram data to perform feedback
reduction by posing the problem as a source separation prob-
lem. Our method is robust to non-linear speech coding as
well as continuous double-talk, which often presents a chal-
lenge to adaptive filters. We compare our method to the use
of an adaptive filter and show superior results with respect to
standard source separation metrics.

Index Terms— Non-Negative Spectrogram Factoriza-
tion, Source Separation, Feedback Reduction

1. INTRODUCTION

The problem of feedback reduction is essentially that of echo
cancellation. This has been an ongoing research topic for
more than half a century and has resulted in a variety of ro-
bust and specialized algorithms which we now use daily (for
an overview see [1]). The objective of these techniques is to
eliminate a known source after it has undergone a transfor-
mation and is then mixed with another new source. This is
a situation that often takes place in a teleconferencing sce-
nario when a transmitted signal is accidentally re-recorded in
the far side (usually due to speaker-microphone coupling, but
also due to network complexities) and is then sent back to
the sender thus resulting in audible feedback. Most of the
approaches to this problem are centered around the idea of a
canceler that assumes that the sent signal will undergo a lin-
ear transform before being re-recorded. This linear transform
accounts for propagation delay, the speaker/microphone fre-
quency response, and the room in which the recording takes
place. It is widespread practice to use an adaptive filter to
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model these effects and then subtract its output from the ob-
served mixture at the far side to suppress the echo from the
return signal (Fig. la). Unfortunately, such adaptive filters
are not always present at the far side.
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Fig. 1: Illustration of different scenarios for feedback reduc-
tion.

In order to avoid this reliance on an adaptive filter on the
far side, it could be useful to develop a solution for the near
side. The user of such a system can be assured of feedback re-
duction regardless of the system used by the other speaker. An
obvious choice would be to use an adaptive filter on the near
side (Fig. 1b). However, there are a few issues with this sce-



nario. Firstly, the filter cannot adapt to good results when both
speakers are simultaneously speaking (double-talk). There-
fore, double-talk detection is commonly used in this scenario
and the filter stops adapting in periods in which both speak-
ers are simultaneously speaking. This is however reliant on a
robust double-talk detector. The other issue is a more funda-
mental problem with adaptive filters in this scenario. These
filters model the transmission channel as a linear filter. How-
ever, in practical scenarios, some form of non-linear speech
coding is generally used in speech transmission. Adaptive fil-
ter therefore face difficulties in this situation.

In this paper, we present an alternative model for feed-
back reduction (Fig. 1c) that circumvents the above problems.
We use a source separation approach and thus can operate on
constantly overlapping sources without requiring double-talk
detection. Moreover, our approach does not produce artifacts
that are commonly associated with adaptive filters in the pres-
ence of non-linearities. The model we present is operating
purely in the magnitude spectral domain and is related to the
non-negative models in [2, 3, 4, 5], as well as the probabilistic
latent variable model in [6]. In the remainder of this paper, we
present the feedback signal path, present our model for mix-
ing, and then demonstrate how it compares against a standard
frequency domain NLMS filter [1] for the problem of feed-
back reduction. We further show its tolerance to permanent
double-talk and non-linear processing (speech coding) which
are cases where adaptive filters encounter difficulties.

2. FEEDBACK SIGNAL PATH

The signal path of feedback in a typical teleconferencing sce-
nario is follows (Fig. 1c):

1. Speech from the near speaker as well as reverberation
from the room of the near speaker are fed into the mi-
crophone.

2. Speech coding takes place and the coded signal is trans-
mitted to the far speaker.

3. The speech is decoded at the far speaker’s side and is
played by a loudspeaker.

4. This decoded speech as well as reverberation from the
room of the far speaker are fed into the microphone.
Speech from the far speaker (with reverberation) is also
fed into the microphone.

5. Speech coding takes place and the coded signal is trans-
mitted to the near speaker.

6. The speech is decoded at the near speaker’s side and
is played by a loudspeaker. This is the feedback that
we wish to suppress. This is of course mixed with the
speech of the far speaker, which we wish to retain.

If the above feedback is not suppressed, it is likely be an an-
noyance to the near speaker. Furthermore, it will be fed back
into the microphone and go through the above steps indefi-
nitely.

3. PROPOSED MODEL

3.1. Model definition

We develop a model of the magnitude spectrogram of a sound
mixture. Since we only model the magnitude part of the spec-
trogram, we treat the data as count data [7] and represent it
as a distribution of acoustic mass along the time—frequency
axes. In this representation, a spectrogram is denoted as a
distribution P(f,t) over frequency f and time ¢. We will as-
sume that the observed recording will be comprised of two
elements, one being the unwanted feedback and the other be-
ing the target speech to extract. We will use a source sep-
aration strategy and assume that the observed spectrogram
P(f,t) is a superposition of the feedback and target spec-
trograms P(f,t|feedback) and P(f,t|target). For the sake
of generality we will treat this problem as having an arbitrary
amount of sources, which we denote by the latent variable z.
This results in the mixture model:

ZP P(f,t2)

To model the convolutive effects, which we observe in a
feedback scenario, we will further refine this model by in-
dependently modeling its sub-bands. We will model each
sub-band signal P(t|f) as a weighted summation of individ-
ual sub-band signals P(¢|f, z) emanating from each source.
The mixture weights in the summation are given by P(z|f)
and the relative magnitudes of the sub-band signals are given
by P(f). The model of the spectrogram is therefore given

by:
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In order to deal with convolutive effects on individual sources
such as reverberation, we further model each individual sub-
band signal as a convolution. Each sub-band signal, P(t|f, 2)
of source z is modeled as a convolution of a magnitude sub-
band source signal Ps(7|f, z) and an imposed channel filter
Pr(t'|f,z) operating on that sub-band, where ¢’ = t — 7.
Therefore, each sub-band signal is given by:
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Note that the convolutions in this model are being modeled in
the magnitude spectrum domain and are thus capable of mod-
eling only echoes and coloration effects. Although at first this
model might seem too coarse and heavily constrained, this
design choice allows it to be very tolerant to dynamic filter
changes while still being able to model mixtures well enough
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Fig. 2: Construction of the mixture spectrogram distribution.
The input spectrogram is assumed to be composed by the
sum of spectrograms representing each of the two sources,
and each source itself is split into a collection of convolutions
between all its sub-bands and a frequency specific impulse
function. Note that all convolutions are operating on the hor-
izontal dimension, and that all quantities are magnitude spec-
trograms.

to extract the desired sources. For the sake of symmetry and
notation, we apply filters on both sources even though in a
feedback reduction operation we only have to assume that one
source (near source) undergoes this transformation. Combin-
ing all of the above, the complete model of the spectrogram
(Fig.2) is given by:

P(f,t)=P(f)>_P(zf)>_ Ps(r|f.2)Pr(t —7|f,2) (1)

All of the distributions in the above model are multinomial. It
is therefore a convolutive multinomial mixture model. This is
a modification of the model introduced in [6], where convo-
lutions now only appear in the left-right dimension and each
sub-band is independently scaled. This particular model can
also be seen as a probabilistic multi-channel generalization
of the non-negative dereverberation model described in [5],
which in turn combines multiple sub-band convolutive NMF
estimators which have been used in the past to model time-
invariance in sound mixtures [2, 3].

3.2. Parameter Estimation

Given a convolutive sound mixture, the first step is to obtain
the magnitude spectrogram, V;. This gives us the number of
counts in each time—frequency bin f,t . We use Vj; to es-
timate the parameters of all of the distributions in the right
hand side of Eq. 1. The parameters that are of the most inter-
est are the parameters of the individual source distributions,
Ps(7|f, ) as they correspond to the clean individual sources.

There are two latent variables in this model, z and 7. z repre-
sents the individual sound source. T represents an instant of
time in the source distribution. ¢’ represents an instant of time
in the filter distribution. Given an instant of time ¢ of the spec-
trogram, the other two time variables are related as t' = ¢t — 7.
Therefore, given a specific ¢, the second latent variable can
be either 7 or ¢’. Since this is a latent variable model, we use
the Expectation—-Maximization (EM) algorithm for the esti-
mation of the model parameters. The E-step, in terms of 7, is
given by:
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The E-step, in terms of ¢/, is given by:
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Iterating over the above steps, we usually obtain a satis-
factory solution after about 30 to 50 iterations. These steps
themselves can be efficiently realized by performing them in
the Fourier domain which dramatically accelerates all of the
implied convolution and cross-correlations in the E- and M-
steps.

3.3. Application to Feedback Reduction

We use a two source case of the above model for feedback
reduction. The first source is the interfering source (near
speaker) and we wish to suppress it. The magnitude spec-
trogram of this source will be the first source distribution
Pg(7|f,1). The channel characteristics (transmission delay,
channel filter, and reverberation filter) of the source is mod-
eled as the first filter distribution Pr(t'|f,1). The second
source is the target source (far speaker) that we wish to ob-
tain. The magnitude spectrogram of this source is modeled as
the second source distribution Pg(7|f,2). Similarly the sec-
ond filter distribution Pr(t'|f,2) is used to model a filter for
that source, which of course can be arbitrary depending on
the assumed form of Pg(7|f,2). If we estimate all of these
quantities from an observed mixture, we can reconstruct the



Intarferance source Target source

o == 2=
o = ()
I - = — — c
== —— = 2
gr—— — - — =1 &
= ——— o w

P = | |

T Tirme
Obsarvad inpul
:
=]
=
B
L
Time

Fig. 3: An artificial example. The two sources are shown at
the top and the observed input which consists of delaying and
filtering the interference source is shown in the bottom.

magnitude spectrogram of the target source as P(¢|f,2) mul-
tiplied by the appropriate weights. This is given by:

P(f)P(z|f))_ Ps(r|f.2)Pr(t = 7lf, 2)

We invert this reconstruction back to the time domain using
the original phase of the mixture.

When performing feedback reduction, a clean recording
of the interference source before it undergoes filtering is al-
ready available to us (Fig. 1c). The feedback that we are try-
ing to suppress is a delayed and filtered version of this source.
So we can assume that we know Pg(7|f, 1) and set it to the
magnitude spectrogram of the original interference source.
Likewise, the filters that are imposed on the target source are
irrelevant since they do not pose a distortion we wish to (or
can) remove. This means that we can fix Pg(t'|f,2) to be a
collection of constant delays with unit gain for all frequencies.
This simplifies our model significantly and makes estimation
of the remaining components easier and unambiguous.

Note that our model is linear. However, we stated that
it is tolerant to non-linear speech coding. The reason is that
our model is linear in the magnitude spectrum domain rather
than the time domain as we are not modeling phase (giving us
only approximate additivity of the sources). Although typical
speech coding is non-linear, it aims to yield speech that is
perceptually similar to the original speech. This corresponds
to yielding results that are similar in the magnitude spectrum
domain. Our model is therefore able to tolerate non-linear
speech coding quite well. The NLMS filter on the other hand
is a linear model in the time domain. It is therefore quite
sensitive to non-linear speech coding.
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Fig. 4: The results of analyzing the example in Fig. 3. All
parameters have been estimated and have converged to good
approximations of the original inputs.

Now let us examine a simple case to illustrate how this
algorithm works. Fig. 3 shows two sources and the observed
recording. The interference source is white noise and the tar-
get source is a modulated sinusoid. The echo of the inter-
ference is delayed significantly and in addition to that it has
undergone high-pass filtering which has changed its spectral
characteristics. Fig. 4 shows what we extract by analyzing the
observation and knowing how the interference source looks
before the delay and filtering. We can see that the discovered
source Pg(7|f,2) corresponds to the target input and that the
filters of the interference source form an appropriate delay
with a high-pass filter in Pr(¢'|f,1). The resulting recon-
struction of the target P(¢|f,2) has successfully attenuated
the interference signal and produced the output we desired.

4. EXPERIMENTS

In this section, we present experiments that demonstrate the
performance of the proposed method and compare it to that of
the NLMS filter. We simulate each of the components of the
feedback signal path in the same sequence as in Sec. 2. We
simulate room reverberation on both ends be convolving with
synthetic room impulse responses (RIRs). The RIRs are ex-
ponentially decaying heavy-tailed noise. We simulate speech
coding using a G.723.1 encoder and decoder.

The output of the loudspeaker on the near side is the un-
wanted feedback from the near speaker (interference source)
as well as the speech from the far speaker (target source). The
goal is to separate these two sources. Therefore we evaluate
the quality of the separation using standard source separation
metrics [8]. This includes three metrics:



1. Source to Interference Ratio (SIR) — This is a mea-
sure of how well we are able to suppress the unwanted
source.

2. Source to Artifact Ratio (SAR) — This is a measure of
the artifacts introduced by the separation process.

3. Source to Distortion Ratio (SDR) — This is an overall
measure of separation performance that takes the above
two criteria into account.

In a given run of the experiment, speech files are randomly
chosen from the TIMIT database to represent the interference
source and the target source. The interference source and tar-
get source are then mixed with some amount of overlap be-
tween the speakers (to simulate double-talk). Given this data,
we evaluate the performance of the proposed method as well
as that of the NLMS echo canceler. We use prior information
from the construction of the mixtures to provide double-talk
detection for the NLMS canceler, which results in optimal
double-talk detection. For a given amount of overlap, we run
the experiment ten times and report the mean results (Table
1). Since the input mixture already has an inherent SIR and
SDR, we report the SIR gain and the SDR gain with respect
to the target source.

As shown in Table 1, the proposed method is able to ob-
tain superior results to the NLMS filter with respect to all
metrics and in all amounts of overlap. As shown, the per-
formance of the proposed method gradually decreases with
increasing amounts of overlap. On the other hand, when us-
ing the NLMS filter, the SIR gain and SDR gain have a sud-
den drop in performance with high amounts of overlap. The
reason for this is that there is continuous double—talk for a
significant portion of the mixture. The NLMS filter does not
adapt at these times. It is therefore not able to effectively
suppress the interference source. The SAR actually increases
with large amounts of overlap. This is likely to be due to the
fact that the output is quite similar to the input in these in-
stances, thereby not introducing much additional artifacts. Of
course, in the process, it is not performing feedback reduction
as reflected by the SIR.

The proposed method is an offline system. However, the
parameter estimation equations can be derived to be updated
recursively in an online manner, which allows a real-time de-
ployment of the algorithm. We plan to address the recursive
updates in a future publication. In order to be fair in our com-
parison to the NLMS filter, we use an offline version of the
NLMS filter. Particularly, we use thirty passes over the data
rather than a single pass (as in the case of a real-time system).
Multiple passes over the data allows the filter to better adapt
to the data. We found that the performance of this offline
NLMS filter is significantly better than the real-time single
pass version.

| Overlap% [ 0 [ 25 [ 50 [ 75 [ 100 |
NLMS 18.89 | 18.58 | 15.12 | 3.83 0.15
Proposed Method | 24.47 | 22.39 | 19.82 | 17.87 | 14.83
(a) Source to Interference Ratio (SIR) Gain
[ Overlap% | 0 [ 25 [ 50 | 75 [ 100 |
NLMS 6.23 5.65 4.12 049 | -1.11
Proposed Method | 19.08 | 17.19 | 13.58 | 11.89 | 9.48
(b) Source to Distortion Ratio (SDR) Gain
[ Overlap% [ 0 [ 25 | 50 [ 75 [ 100 |
NLMS 8.09 7.74 6.09 8.17 | 10.67
Proposed Method | 22.19 | 20.59 | 16.37 | 14.78 | 13.48

(c) Source to Artifacts Ratio (SAR)

Table 1: Experimental results

5. CONCLUSIONS

In this paper, we presented a novel formulation of feedback
reduction based on source separation ideas. By formulating
the feedback reduction problem as a constrained convolutive
mixture model, we were able to bypass some of the problems
that are inherent in a more traditional approach. We showed
that the resulting approach is tolerant to non-linear speech
coding) We additionally demonstrated that it is not dependent
on double-talk detection and can operate even during constant
overlap between sources. These features make it a good can-
didate even for challenging problems such as feedback reduc-
tion for networked collaborative music making, which is filled
with double-talk of musical instruments.
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