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ABSTRACT

We propose an efficient technique to learn probabilistic hierarchical
topic models that are designed to preserve the manifold structure of
audio data. The consideration of the data manifold is important, as
it has been shown to provide superior performance in certain audio
applications such as source separation. However, the high compu-
tational cost of a sparse encoding step due to the requirement of a
large dictionary prevents it from being used in real-world applica-
tions such as real-time speech enhancement and the analysis of big
audio data. In order to achieve a substantial speed-up of this step,
while still respecting the data manifold, we propose to harmonize
a particular type of locality sensitive hashing with the hierarchical
topic model. The proposed use of hashing can reduce the compu-
tational complexity of the sparse encoding by providing candidates
of non-zero activations, where the candidate set is built based on
Hamming distance. The hashing step is followed by comprehen-
sive sparse coding that considers those candidates only, rather than
the entire dictionary. Experimental results show that the proposed
hashing technique can provide audio source separation results com-
parable to the similar system without hashing, but with significantly
less and cheaper computation.

Index Terms— Locality Sensitive Hashing, Winner Take All
Hashing, Source Separation, Topic Modeling

1. INTRODUCTION

Probabilistic topic models such as Probabilistic Latent Semantic In-
dexing (PLSI) [1] and a related non-probabilistic counterpart, Non-
negative Matrix Factorization (NMF) [2], have gained a great deal
of popularity for analyzing monaural audio signals, e.g. music tran-
scription [3], music source separation [4, 5, 6], and speech denois-
ing [7, 8]. A common assumption that underlies those approaches is
that each magnitude spectrum of the Short-Time Fourier Transform
(STFT) of an audio signal is generated from a probability vector.
Topic models are to discover a convex combination of topics to ap-
proximate the underlying distribution, where each topic represents a
sound component, e.g. a note of music or a phoneme of speech, with
the help of its additive parts-based representation.

A popular usage of such models is for the process of separating
multiple sound sources from a single-channel mixture recording. In
that scenario, a convex hull is first learned for each source-specific
set of training spectra. Then, an unseen mixture spectrum is decom-
posed into individual estimates of source spectra such that they meet
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Fig. 1. [11] A toy separation example with (a) an ordinary topic
model (b) sparse PLSI. In (a) the source estimates are good solutions
in the conventional sense, because they are in their corresponding
convex hulls and their convex combination approximates the mixture
well. However, they are not good source estimates after all since they
are off the manifold of the training data and one of them even falls
in the overlap. In (b) the solutions with sparse PLSI are free from
those problems.

two criteria about convex combinations. First, each source estimate
should be confined to its corresponding convex hull, which models
the source. Second, the convex combination of the source estimates
should approximate the mixture [9].

Manifold learning is particularly important when training sig-
nals are monophonic, i.e. the signal has only one pitch or utterance
at a time, such as with speech. In this case the ordinary convex hull
representation may result in spurious approximations since the hull
encompasses all the possible combinations of topics both on and off
the data manifold. For instance, speech estimates in the off-manifold
area, but inside the hull, might not sound like human speech. Addi-
tionally, convex hulls from different sources can overlap with each
other and degrade separation results since the hull learned from the
training data of a given source could then to some degree explain
other sources. This insight was addressed in [10], where a sparse
non-parametric model was proposed to handle the issue (we refer to
this technique as sparse PLSI). In sparse PLSI, each training spec-
trum is considered as a fixed individual topic, and only a few of them
are activated to explain a source spectrum, which finally contributes
to form a mixture spectrum. Figure 1 depicts this argument.

A disadvantage of this manifold consideration is the requirement
of larger training data sets for robust local reconstruction. Retaining
a large number of training samples, instead of the convex hulls de-



fined by their simplicial corners only, makes learning computation-
ally heavy and demands a larger amount of memory. These issues
were addressed by hierarchical topic models in [11], where a middle-
layer variable was presented to divide the model into two parts: lo-
cal selection (the lower level) and global approximation (the higher
level). In the former part, the overcomplete dictionary elements are
multiplied with the sparsely encoded middle-level selector variable
to produce a set of hyper topics, each of which represents a partici-
pating source spectrum. The hyper topics are then combined to ap-
proximate the mixture input mimicking the audio mixing procedure.
Although this model provides a more direct and convenient way to
couple manifold learning and topic modeling, its sparse coding step
on the selector variable still demands a lot of computation.

In this paper, we propose a technique to speed up the afore-
mentioned manifold preserving source separation by using hashing,
which is the first attempt to examine the use of hashing for audio
topic models to the best of our knowledge. To this end, we adopt
Winner-Take-All (WTA) hashing [12], a particular type of locality
sensitive hashing [13], which has shown to be efficient in image
search [14]. Similar to the original usage, we hash the dictionary
elements to promptly provide a small set of candidates as a match
result, so that the subsequent exhaustive search can only focus on
this reduced set rather than the entire dictionary. We use Hamming
distance on the hash code bits to minimize the burden introduced by
this additional procedure of constructing the candidate set. On the
other hand, the difference from the original hashing is that we have to
associate a hash code from a mixture spectrum with multiple codes
from different sources. Our key contribution is the development of a
technique to do this. Another important advantage of employing the
hashing technique is that its cheap fixed-point operations can extend
the applicability of the topic model-based audio analysis techniques
to the implementations with more restricted conditions.

2. RELATED WORK

2.1. The Hierarchical Topic Models for Manifold Preserving
Source Separation

For an observation vector indexed by t = {1, · · · , T}, the prob-
abilities of observing the features indexed by f 2 {1, · · · , F} is
approximated by a combination of multi-layered topics, Xf,t s
P

zy,y
P (f |zy)Pt(zy|y)Pt(y) [11]. In this model P (f |zy) is for

a categorical distribution over the features given a topic zy , equiva-
lently to that in standard topic models [1, 15] if we ignore y, the sub-
script indicating the hyper topics1. The second parameter Pt(zy|y)
can be viewed in two ways. First, if we marginalize the middle-
layer topics y 2 {1, · · · , Y }, then the conventional topic distribu-
tion is specified, i.e.

P

y Pt(zy|y)Pt(y) = Pt(z). On the other
hand, Pt(zy|y) can aggregate original topics into its representatives
Pt(f |y) = P

zy
P (f |zy)Pt(zy|y), which we call hyper topics.

In the hierarchical topic model Pt(zy|y) is regularized to be
sparse. If for a given y only a small number of original topics zy
are activated, they tend to form a local convex hull on the data man-
ifold where their combination, the hyper topic Pt(f |y), lies on. One
of the ways to impose the sparsity constraint proposed in [11] is to
search for the nearest neighbors of the current estimation of hyper
topics, and allow only those neighbors to be activated.

1We use the more basic PLSI model rather than Latent Dirichlet Alloca-
tion (LDA) for a clearer explanation of the proposed manifold learning ideas.

A hyper topic Pt(f |y) can have a set of nearest neighbors N t
y :
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where cross entropy is used for the divergence measure, i.e. E [AkB] =

�P

Ai logBi. The set should be small enough to reflect the local
structure as in Locally Linear Embedding (LLE) [16]. Once the
neighbor set is found, the selector elements P (zy|y) with zy /2 N t

y

are filled with zeros. Consequently, the hierarchical EM updates are
only on the neighbor set N t

y :

The reduced E-step:

Pt(zy, y|f) P (f |zy)Pt(zy|y)Pt(y)
P

zy,y
P (f |zy)Pt(zy|y)Pt(y)

8zy 2 N t
y (2)

The reduced M-step:

Pt(zy|y) 
P

f Xf,tPt(zy, y|f)
P
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Xf,tPt(zy, y|f) 8zy 2 N t

y ,

Pt(zy|y) 0 8zy /2 N t
y ,

Pt(y) 
P

f,zy
Xf,tPt(zy, y|f)

P

f,y,zy
Xf,tPt(zy, y|f) 8zy 2 N t

y . (3)

In the separation scenario, Xf,t stands for the magnitude of Fourier
spectra of a mixed signal, while the middle-layer latent variable y
indicates sources. We denote the overcomplete dictionary of y-th
source with P (f |zy). Note that the topic index zy for the dictionary
elements is with the source index y to distinguish dictionaries from
different sources. We assume that a mixture spectrum is associated
with a set of hyper topics, each of which corresponds to an estimated
source spectrum. The time index t reflects the fact that we do the
separation in a frame by frame manner. Finally, the separation of y-
th source from t-th mixture spectrum can be done by multiplying the
learned posterior to the input mixture, i.e. Xf,t

P

zy
Pt(zy, y|f).

Computational complexity: if we ignore the nearest neighbor
searching step (1) and assume the number of training specta Zy is
same for all the sources, the complexity of separating a frame in
(2) and (3) is O(FZyY ). With the sparse representation of matri-
ces for Pt(zy|y), the complexity of the separation further reduces to
O(FKY ), where K is the number of neighbors smaller than Zy .
However, the nearest neighbor search cannot be ignored since its
complexity O(FZyY ) on the entire training samples Zy is higher
than O(FKY ).

2.2. Winner-Take-All Hashing

The recent application of WTA hashing [12] to a big image search-
ing task provided accurate and fast detection results [14]. As a kind
of locality sensitive hashing [13], it has several unique properties:
(a) similar data points tend to collide more (b) Hamming distance
of hash codes approximately reflects the original distance of data.
Therefore, it can be seen as a distribution on a family of hash func-
tions F that takes a collection of objects, such that for two objects
x and y, Prh2F [h(x) = h(y)] = sim(x, y). sim(x, y) is some
similarity function defined on the collection of objects [17].

WTA hashing encodes relative ordering of the elements in an in-
put vector. Although the rank order metric can be a stable discrimi-
native feature, it non-linearly maps data to an intractably high dimen-
sional space. For example, the number of orders in M -combinations
out of an F -dimensional vector is (# combinations) ⇥ (# orders in
each combination) = F !

(F�M)! . Instead, WTA hashing produces hash
codes that compactly approximate the relationships.



WTA hashing first defines a permutation table P 2 RL⇥M that
has L different sets of random indices, each of which chooses among
M elements. For the l-th set the position of the maximal element
among M elements is encoded instead of the full ordering. There-
fore, the length of hash codes is ML-bits since each permutation
results in M bits, where only one bit is on to indicate the position
of the maximum, e.g. 3 = 0100 if M = 4, and there are L such
permutations. Whenever we do this encoding for an additional per-
mutation, at most M�1 new pairwise orders (maximum versus the
others) are embedded in the hash code. The permutation table is
fixed and shared so that the hashing results are consistent.

For example, if the first row of PL⇥2 is [4, 2], then the first
two bits of the hash code for a vector x = [8.8,9.9,3.3,3.4] will
be 10 since the second index 2 indicates the largest element (3.4
versus 9.9). Another row in P will add another two bits, and so
on. Note that WTA hashing results in hash codes that respect shape
similarities rather than simple Euclidean distance between vectors.
Also, WTA hashing is known to be robust to the additive noise.

Even though WTA hashing provides stable hash codes that can
potentially replace the original features, its approximated rank orders
cannot fully reflect the original error function, e.g. cross entropy in
topic models. Therefore, in the proposed method, we use this hash
codes only to reduce the size of the solution space. Then, the final
separation is achieved from the original EM algorithm with compre-
hensive nearest neighbor searching in (1) and (3).

3. WINNER-TAKE-ALL HASHING FOR MANIFOLD
PRESERVING SOURCE SEPARATION

As in Section 2.1, we can respect the manifold of the data during
topic modeling by allowing only a small number of local neighbors
to participate in the reconstruction of the hyper topics. Sparsity on
the selection parameter Pt(zy|y) is critical for this procedure, but
due to the possibly large number of training samples, Zy , it primar-
ily accounts for the computational complexity of the algorithm. One
naı̈ve approach to using hashing in order to reduce this complexity is
to replace the active set of topics, i.e. the nearest neighbors N t

y , with
the ones with lowest Hamming distance to the hyper topics. How-
ever, the mismatch between the approximated rank ordering measure
and the original cross entropy can cause inaccurate results.

Instead of solely relying on Hamming distance as our distance
metric, we use WTA hashing as a pre-processing step. After the
hashing part reduces the search space from Zy to N topics, we per-
form a K nearest neighbor search on these reduced N topics to refine
the results. The key idea is to keep an up to date set of candidates
ZN⇥Y , whose y-th column vector holds the indices of N closest
candidates to the y-th hyper topic in terms of the Hamming distance.
If we set K < N ⌧ Zy , the final estimation of Pt(zy|y) can fo-
cus only on N elements rather than the entire Zy topics. Unless
N is too small to include the K important topics as candidates, or
the Hamming distance defined on the WTA hash codes is signifi-
cantly different from the original distance measure, some spurious
candidates included in the candidate set should not be of significant
consequence. In other words, the exhaustive nearest neighbor search
is able to pick out the final nearest neighbors anyway with or without
hashing, but a proper hashing results can speed up this by providing
good candidate solutions.

Algorithm 1 describes the separation procedure assisted by
WTA hashing. We use notation A:,i to indicate i-th column of a
matrix A. In Algorithm 1 each source has its own set of training
samples that are indexed by zy , and hashed in advance (line 4 to 6).
Then, we separate each t-th mixture frame independently. In order

Algorithm 1 Manifold preserving source separation with WTA
hashing

1: Initialize a permutation table P 2 RL,M .
2: Initialize P (f |zy) with source-specific training spectra.
3: Initialize N and K to hold the inequalities, K<N< Zy .
4: for y  1 to Y and zy  1 to Zy do
5: C:,zy,y  WTA hash( P (f |zy):,zy ,P)
6: end for
7: for t 1 to T do
8: Initialize Pt(f |y), Pt(zy|y) and Pt(y) with random numbers,

and normalize to sum to one.
9: repeat

10: for y  1 to Y do
11: c WTA hash( Pt(f |y):,y,P)
12: Find a set of N candidate topics for y-th source,

zy 2 Z:,y , with least Hamming distance to c:
Hamming(c, C:,zy,y).

13: N t
y  

n

zy

�

�

�

zy 2 Z:,y, E
h

P (f |zy)
�

�Pt(f |y)
i

<

E
h

P (f |z0y /2 N t
y)
�

�Pt(f |y)
io

14: for all f 2 {1 · · ·F}, zy 2 N t
y do

15:
Pt(zy, y|f) P (f |zy)Pt(zy|y)Pt(y)

P

zy,y
P (f |zy)Pt(zy|y)Pt(y)

,

Pt(zy|y) 
P

f Xf,tPt(zy, y|f)
P

f,zy
Xf,tPt(zy, y|f) ,

Pt(y) 
P

f,zy
Xf,tPt(zy, y|f)

P

f,y,zy
Xf,tPt(zy, y|f) ,

Pt(f |y) 
X

zy2N t
y

P (f |zy)Pt(zy|y).
16: end for
17: end for
18: until Convergence
19: end for

to conduct simultaneous hash code matching on multiple source
dictionaries with only an unseen mixture spectrum, at every itera-
tion we do a tentative separation first, and then do hashing with the
source estimates. First, current source estimates Pt(f |y) (randomly
initialized vectors at the first iteration) are hashed for a later com-
parison with their corresponding dictionaries (line 11). Once again,
Hamming distance is used to take advantage of the lower complexity
of bit-pattern comparisons (line 12). The learned N candidates per
each source are used for the subsequent nearest neighbor search,
which was originally on the entire samples Zy�N (line 13). The
actual EM updates are not affected by this procedure, since they
are already defined by excluding non-neighbors (line 14 to 16).
The proposed harmonization of hashing and the topic model relies
on the reconstruction of the normalized source spectra Pt(f |y) at
every EM iteration (line 15). It could be a tentative solution to the
separation problem before the convergence, but at the same time it
serves as a query at the next iteration to update the neighbor sets:
the candidate set Z and the nearest neighbors N t

y .

3.1. Computational complexity

First of all, we can ignore the complexity of the hash code gener-
ation procedure O(LMZyY ) as it can be done in advance (line 4
to 6). Since EM updates (line 15) are still on the K final nearest
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Fig. 2. The average cross talk cancellation results of ten random
pairs of speakers by using the comprehensive MPS and its hashing
version, MPS-WTA, in terms of (a) SDR (b) SDR (c) SDR. (d) Av-
erage run time of individual iterations. We implemented the algo-
rithms with MATLAB R� and ran them in a desktop with 3.4 GHz
Intel R� CoreTM i7 CPU and 16GB memory.

neighbors, their complexity O(FKY ) remains same. The actual
speed-up happens in line 13 where we do the cross entropy based
nearest neighbor search, but now on a much reduced set with only
N candidates. Therefore, line 13 runs in the order of O(FNY ),
which reduces original complexity O(FZyY ) if N < Zy .

Hashing introduces additional complexity, but it is still less com-
plex than O(FNY ). WTA hashing for Y hyper topics (line 11), the
calculation of Hamming distance between the hyper topics and the
training data, and construction of N candidates (line 12), run in the
order of O(Y LM), O(Y LZy), and O(ZyN), respectively. How-
ever, because usually we set L < F and M < N , its complexity
O(Y LM) is lower than O(FNY ). The Hamming distance calcula-
tion with O(Y LZy) can be also disregarded thanks to the cheap bit-
operations. Therefore, the complexity of each iteration for the source
y is governed by O(ZyN) or O(FNY ) depending on the inequality
between Zy and FN , while neither of them is more complex than
the original O(FZyY ) since usually N<Zy and N<FY .

4. NUMERICAL EXPERIMENTS

In this section we compare the hierarchical models with or without
the use of hashing: the comprehensive Manifold Preserving Separa-
tion without hashing (MPS) and the proposed Manifold Preserving
Separation with WTA hashing (MPS-WTA). The comparison vali-
dates that the proposed harmonization with hashing does not signif-
icantly reduce the cross-talk cancellation (separation of a target and
interference speaker) performance although it spends less time. The
separation quality is measured with the common source separation
metrics: Signal-to-Interference Ratio (SIR), Signal-to-Artifact Ra-

tion (SAR), and Signal-to-Distortion Ratio (SDR), that measure the
degree of separation, algorithmic artifacts, and the overall quality,
respectively [18]. Throughout the experiments, the size of the can-
didate set N is set to be proportional to that of N t

y , i.e. N = 5K.
A permutation table P is defined with L = 100 and M = 4, and
shared among all hash executions.

For the cross-talk cancellation experiment, we first concatenate
nine random sentences per a TIMIT speaker as our training data.
Each training set is then transformed into a matrix using STFT with
64 ms Hann windowing and 32 ms overlap. We take the magnitudes
of the matrix and normalize them to make sure the column vectors
sum to one. A sentence per each speaker is set aside for testing. We
randomly select a pair of male and female speaker for an experiment
and mix their test sentences. We repeat this for ten different pairs.
Depending on the random choices of speakers and the sentences,
the number of the column vectors (spectra) in the training matrices
varies from around 700 to 1,000, while the number of frequency bins
is fixed to 513. We run both algorithms for 200 iterations, where
we observe convergence. We tried different numbers of neighbors
K = {1, 3, 5, 9, 15, 51, 101, 201} to control the model complexity.

Figure 2 shows the separation results. We can see that the two
methods share similar degrees of separation performance. In the first
three sub-figures we can see that their separation performances in
terms of (a) SDR, (b) SIR, and (c) SAR, are not significantly dif-
ferent between the two methods. Therefore, we can conclude that
MPS-WTA gives comparable crosstalk cancellation performance to
MPS. It is a favorable observation for the proposed method, as it can
perform the task with reduced computation as we analyzed in section
3.1, and in less average run time per an iteration as shown in Figure 2
(d). From the figures, we observe that with the proposed method, we
achieve a significant speed-up by reducing the number of neighbors
with a modest decrease in separation performance. For instance,
by reducing the number of neighbors from 51 (above which there
seems to be no gain in performance) to 5 we can triple the speed, but
the separation performance decreases only by about 1.5dB. When
N is set to be larger than the number of the training samples, hash-
ing does not provide with the compact candidate set anymore, but
merely increases the computation with its redundant searching (see
the topmost bar in (d)). Note that the average run time cannot be a
valid measure by itself since it can depend on the implementation.
Instead, we believe that the computational complexity analysis in
Section 3.1 justifies the speed-up theoretically.

5. CONCLUSION

In this paper we proposed to use hashing to facilitate efficient learn-
ing of a manifold from audio spectra during their decomposition.
The decomposition model uses a middle-layer latent variable to learn
the computationally expensive sparse encoding of overcomplete dic-
tionaries, because the sparsity allows the only local neighbors to con-
tribute to the solution similarly to the manifold learning techniques.
The proposed hashing technique reduced the complexity by provid-
ing a set of candidates that can include the final sparse activations. In
this way the proposed hashing-based topic model could achieve the
separation of audio mixtures with no performance drops, but with a
sensible speed-up. The proposed method was particularly useful in
learning a compact representation or in quickly picking out the only
relevant entries from a relatively large audio data set. Experiments
on a cross-talk cancellation task showed the merit of the proposed
method, showcasing both increased processing speed and compara-
ble accuracy. We believe that the proposed method can be promising
in devices with limited resources, and in analyzing big audio data.
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