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ABSTRACT
Automated objective methods of audio source separation
evaluation are fast, cheap, and require little effort by the in-
vestigator. However, their output often correlates poorly with
human quality assessments and typically require ground-
truth (perfectly separated) signals to evaluate algorithm per-
formance. Subjective multi-stimulus human ratings (e.g.
MUSHRA) of audio quality are the gold standard for many
tasks, but they are slow and require a great deal of effort
to recruit participants and run listening tests. Recent work
has shown that a crowdsourced multi-stimulus listening test
can have results comparable to lab-based multi-stimulus
tests. While these results are encouraging, MUSHRA multi-
stimulus tests are limited to evaluating 12 or fewer stimuli,
and they require ground-truth stimuli for reference. In this
work, we evaluate a web-based pairwise-comparison listening
approach that promises to speed and facilitate conducting lis-
tening tests, while also addressing some of the shortcomings
of multi-stimulus tests. Using audio source separation quality
as our evaluation task, we compare our web-based pairwise-
comparison listening test to both web-based and lab-based
multi-stimulus tests. We find that pairwise-comparison lis-
tening tests perform comparably to multi-stimulus tests, but
without many of their shortcomings.

Index Terms— audio quality evaluation, crowdsourcing,
source separation

1. INTRODUCTION

In recent years there has been increased dissatisfaction
with the existing automated objective metrics that are typ-
ically used to evaluate audio source separation algorithms
[1, 2, 3, 4]. It is difficult to make informed decisions to im-
prove source separation algorithms when researchers have
shown that metrics such as BSS-Eval [5] and PEASS [6]
poorly correlate with human perception of quality [1, 3].
Also, ground-truth signals are required by the most popu-
lar objective metrics. These may not be available in many
cases. An alternative to automated objective metrics is to
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run subjective listening tests. However, lab-based subjective
listening tests such as MUSHRA [7] typically require at least
20 participants, and recruiting these participants and admin-
istering tests can easily consume a week of a researcher’s
time. Researchers have sought to reduce the time and effort
to run listening tests by moving them from the lab to the web
[8, 9, 10, 11], but experimental testing is needed to determine
how this change in environment affects quality judgments.

Recently, we compared MUSHRA performed in a con-
trolled lab environment (lab-MS) to a MUSHRA-like1 multi-
stimulus test performed in an uncontrolled web environment
on a population drawn from Mechanical Turk (web-MS). In
that study, we collected crowdsourced data from over 500
participants in less than 9 hours—a feat that would be dif-
ficult to accomplish with a lab-based study. We also showed
that web-MS perceptual evaluation scores are comparable to
those estimated in the controlled lab environment. However,
while crowdsourced MUSHRA-like tests can be a proxy for
lab-based MUSHRA tests in some situations, these tests rec-
ommend to limit the number of stimuli to only 12 audio sig-
nals [7]. This is a limitation when evaluating many source
separation algorithms in campaigns such as SISEC [12].

Pairwise-comparison tests have a long history in psy-
chometric testing and are well studied [13]. There is also a
history of pairwise-comparison listening tests in audio (e.g.
ABX or ITU-R BS.1116-2 [14]). Pairwise-comparison tests
are discriminative by design and require participants to attend
to fewer stimuli simultaneously than multi-stimulus tests—
a characteristic that could be beneficial if recruiting novice
participants from crowdsourcing platforms. In pairwise-
comparison tests, we can also measure participant reliabil-
ity by simply observing transitivity in their comparisons
[15, 10], whereas MUSHRA/MUSHRA-like tests require
repeated trials. Consistency measures are useful for incen-
tivizing workers with consistency-based rewards. Therefore,
pairwise-comparison tests may be more suitable for large-
scale, crowdsourced quality evaluations.

1Some of the MUSHRA recommendations are not feasible on the web
(e.g. playback system specifications and the requirement for expert users)
[1]. However, the multi-stimulus test we implemented still shares many char-
acteristics of MUSHRA such as the inclusion of hidden reference and anchor
stimuli. Therefore, we refer to our multi-stimulus tests as “MUSHRA-like”.



There are variants of pairwise-comparison tests that can
estimate quality scores with or without ground-truth stimuli
for reference [16]. This allows evaluation to be performed on
any kind of real-world data. Also, there is no limit on the
number of stimuli that can be evaluated. When an additional
stimulus is compared, individual tasks are not more taxing
on the participant—we need more pairwise comparisons per
trial, but these comparisons can be distributed among multiple
participants. Techniques have also recently been developed to
further reduce the number of comparisons [17, 18].

Given the potential advantages of pairwise evaluation of
audio over the web, in this work we seek to establish how
results from pairwise-comparison listening tests conducted in
a crowdsourced setting compare to gold-standard results col-
lected from a multi-stimulus listening test in a lab setting.

2. METHODS

2.1. Baseline Data Set

As in our previous study [1], we compare our quality scores
to the results of a lab-based listening test that followed the
MUSHRA recommendation and was conducted by the de-
velopers of PEASS [6] to train the PEASS objective scor-
ing models. We refer to this lab-based multi-stimulus test as
lab-MS, and our previous web-based, MUSHRA-like multi-
stimulus test as web-MS. In our current study of pairwise-
comparison listening tests, we use the same test audio as these
previous tests, and we treat the lab-MS results as the gold-
standard baseline. This test material consists of 10 mixtures
(5 speech, 5 music), each 5 seconds long and containing 2–7
sources. Two speech mixtures are mono, and the remaining
mixtures are stereo. For each mixture, there are 8 test stimuli:
the ground-truth target source (the reference), 3 anchors, and
4 outputs of a variety of source separation algorithms. The
lab-MS data was collected in a lab setting from 20 normal-
hearing participants who were experts in general audio ap-
plications. Each participant performed a MUSHRA trial for
each of the 10 sets of test stimuli for 4 different quality scales:
overall quality, preservation of the target source, suppression
of other sources, and absence of additional artificial noises.

2.2. Listening Test Procedure

In a pairwise-comparison listening test, a participant is asked
to choose which of two test stimuli 2 is higher on a given
quality scale, e.g. “In which recording are the drums louder?
Recording A or B?”. A participant may answer the same
question for several different pairs of stimuli, and each pair
will be evaluated by several different participants. Using
these pairwise preference decisions, a stimulus preference or-
der and (possibly) absolute stimulus scores may be estimated.

2In some studies one or more reference stimuli are also provided.

To perform pairwise-comparison listening tests on the
web, we recruited participants from Amazon’s Mechanical
Turk in the same manner as the web multi-stimulus experi-
ment (web-MS)[1]. We also assigned tasks in the same man-
ner as web-MS, assigning participants to one quality scale,
and allowing each participant to perform up to 10 randomly-
ordered trials. However, for each task, instead of performing a
single multi-stimulus trial, participants performed a pairwise-
comparison trial, comparing all pairs of stimuli associated
with a mixture—
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, or 28, pairwise comparisons in random

order (i.e. 1 trial=28 pairwise comparisons). We limited each
participant to one quality scale to reduce task confusion and
to eliminate any quality scale ordering effects.

Participants completed the pairwise-comparison test us-
ing our Crowdsourced Audio Quality Evaluation (CAQE)
software3. Using CAQE’s web-interface, when a partici-
pant first selects a stimulus (A, B, mixture, or reference),
looped playback of the selected stimulus begins. When a
participant selects a subsequent stimulus, the playback loop
synchronously switches to the selected stimulus, maintaining
the current playback location. A participant can only proceed
to the next comparison after they have listened to the stimuli
for five seconds and have selected either the A or B stimulus.
As in the web-MS training, participants were required to lis-
ten to examples of reference and anchor stimuli to familiarize
themselves with the quality scales. All instructions were kept
as similar to the web-MS experiment as possible.

As in the web-MS listening test [1], we collected a min-
imum of 20 pairwise-comparison trials for each condition
(mixture / quality scale pair). However, we limited the anal-
ysis in this paper to the data from the first 20 participants to
fairly compare to the lab-MS and web-MS data. We paid par-
ticipants $0.80 for completing the first trial, which included
a hearing evaluation [1], and $0.50 for subsequent trials. In
addition, participants could receive up to a $0.25 bonus based
on the consistency of their comparisons. Only participants
with at least 1000 approved Mechanical Turk assignments
and a 97% approval rate were recruited. It took 35.5 hours to
collect all of the pairwise data. This is longer than the web-
MS data collection time (8.2 hours), and we suspect this is
due to an imbalance between task length and task reward[19].
We could potentially reduce the completion time by either in-
creasing the task reward to appropriately match the length of
the task or also by simply allowing participants to complete
trials of more than one quality scale.

We also introduced a fifth quality scale in this study. In
both the web-MS and lab-MS studies, participants seem to
confuse the preservation of the target source and absence of
additional artificial noises scales—it’s as if the participants
could not distinguish between additive artifacts (absence of
additional artificial noises) and subtractive artifacts (preser-
vation of the target source). Such confusions can lead to in-
consistencies in preference ratings which affect score estima-

3https://github.com/interactiveaudiolab/CAQE



tion. Therefore, in this study we introduced a lack of distor-
tions to the target source, a scale which is inclusive of both
additive and subtractive artifacts.

2.3. Quality Score Estimation

To estimate the latent quality scores from the pairwise-
comparison data, we use a Thurstone model. A Thurstone
model is a probabilistic latent variable model that maps dis-
crete preference orderings (e.g. pairwise comparisons) of N
items (a1, a2, . . . , aN ) to latent scores (µ1, µ2, . . . , µN ) on an
interval scale [20]. The model assumes that the items can be
assigned values on this scale with some measurement error,
and therefore the model treats the scale values as random
variables (S1, S2, . . . , SN ). The distance between two items
on the unobserved scale and the measurement error affect
the pairwise preference probabilities of the items—the larger
the perceived difference between two items on the scale, the
greater probability that the higher item on the scale will be
preferred by a listener. In our case, the discrete preference
orderings of items are the pairwise comparisons of audio
stimuli as described earlier, and our interval scale is an audio
quality measure. The basic Thurstone model is as follows:

Sn ∼ Normal(µn, σ
2
n), for n ∈ 1 : N (1)

Pr(ai � aj) = Pr(Si > Sj), for i, j ∈ 1 : N ; i 6= j (2)
= Pr(Si − Sj > 0) (3)

For simplicity and identifiability, it is common to assume that
all variances σ2

n are equal (i.e., σn = σ). This variation is
known as Thurstone Model V [20]. With this assumption,
[21] showed Eq. 1 can be rewritten as:

Pr(ai � aj) = Φ

(
µi − µj

σ
√

2

)
(4)

where Φ is the cumulative distribution function of the normal
distribution.

Using Eq. 4, we can relate a preference probability of two
audio stimuli to their latent quality scores (µi and µj) and
variance (σ). However, we want to jointly estimate the scores
of all audio stimuli. We can write the likelihood for a set of T
pairwise comparisons (e.g., 20 participants’ pairwise compar-
isons of the 8 stimuli associated with a mixture for a particular
audio quality scale—20× 28 = 560 comparisons) as:

L(θ|aii[t] � ajj[t]∀t ∈ 1 : T ) =

T∏
t=1

Φ

(
µii[t] − µjj[t]

σ
√

2

)
(5)

µn ∼ Uniform ∈ [0, 100], for n 6= h, n /∈ L
µh ∼ Truncated-Normal(100, 5) ∈ [0, 100]

µn ∼ Truncated-Normal(15, 15) ∈ [0, 100], for n ∈ L
σ ∼ Uniform ∈ [0, 100]

where θ = (µ, σ), h is the hidden reference stimulus index,
L is the set of hidden anchor stimuli indices, and ii[t], jj[t] ∈
1 : N are the indices for the stimulus pair in comparison
t ∈ 1 : T . Note that all of the preference information for
a comparison is in the indices, ii[t] and jj[t], since the pre-
ferred stimulus is always assigned to ii[t].

Since the MUSHRA scale range is [0, 100], we limit the
range of all score variables to [0, 100] and set the priors for
scores of the stimuli of systems under test (all stimuli but the
hidden reference and anchors) to Uniform(0, 100). The priors
on the hidden reference and anchor scores are set according to
our expectations as well—very high for the hidden reference
and relatively low for the hidden anchors. While these spe-
cific priors and limits are not necessary for estimating mean-
ingful scores, they are necessary if we want scores scaled for
direct comparison to the results of MUSHRA tests.

We fit a different Thurstone model for each quality scale
and mixture (i.e., 40 fitted models in total) using the NUTS
algorithm for Markov chain Monte Carlo (MCMC) sampling
[22]. When fitting models, we drew two chains of 10,000
samples from the posterior distribution, dropping the first
5,000 and thinning by a factor of 2. Gelman and Rubin’s po-
tential scale reduction R̂ is an MCMC sampling convergence
diagnostic based on the within-chain and between-chain vari-
ance of two or more sampling chains [23]. It is generally
accepted that chains are adequately mixed and sampling has
converged when R̂ is near 1.0 with an acceptance threshold
of 1.1 [23]. The variables for all models and conditions met
the R̂ < 1.1 acceptance criterion.

3. RESULTS

To establish if our web-based pairwise-comparison listening
test can act as a proxy for a lab-based, gold-standard test, we
calculated the Pearson correlation between the lab-MS scores
and the scores estimated from the Thurstone model. The re-
sults are shown in Figure 1. For comparison, we included the
scores estimated by the web-MS test and [1] and the scores
calculated from the most popular automated measures of au-
dio source separation quality: the BSS-Eval measurements
(i.e. SDR, ISR, SIR, and SAR). The Thurstone model’s corre-
lations with lab-MS were comparable to those of the web-MS
to lab-MS for all qualities except preservation of the target
source, for which the correlations were lower—the null hy-
pothesis that the correlations were equal for preservation of
the target source was rejected by a William’s t-test with Bon-
ferroni correction (p = 0.013), but not for the other quality
scales (p > 0.05).

Next, we investigated the discriminative power of the lab-
MS, web-MS, and Thurstone score estimations. To investi-
gate this, we calculated the widths of the 95% confidence
intervals (CIs) for the scores of the systems under tests and
aggregated over the original four quality scales. Tighter con-
fidence intervals are preferable because of their greater statis-



Fig. 1. Pearson correlation with the lab-MS scores and
the scores estimated from the pairwise-comparison tests and
models (web-MS and BSS-Eval included for comparison).
Scores were limited to the systems under test (i.e. excluding
the reference and anchors) and estimated using a sample size
of 20 participants per mixture. Scores for all mixtures were
concatenated before calculating the correlation for each qual-
ity scale (N = 40). Bars represent 95% CIs calculated from
1000 bootstrap iterations, randomly sampling with replace-
ment from the lab-MS ratings and sampling from posterior
distribution of the pairwise model scores.

tical power in discriminating between stimulus scores. The
mean and std. deviation of the CI-widths of the lab-MS, web-
MS, and Thurstone scores were respectively mean = 22.0
(SD = 10.3), mean = 21.7 (SD = 7.3), and mean = 26.7
(SD = 3.6). A one-way ANOVA rejected the null hypothesis
that these means are equal (F (2, 477) = 21.88, p < 0.001).
A post hoc Tukey HSD test (α = 0.05) showed that the Thur-
stone scores have a statistically different CI-width mean than
both lab-MS and web-MS, but the difference between lab-MS
and web-MS is not significant. Therefore, while the Thur-
stone scores are comparably as similar to lab-MS as web-MS
are to lab-MS, the distributions of the Thurstone scores are
less discriminative than web-MS when using the same num-
ber of participants—more participants are likely required to
get tighter CIs.

Lastly, to evaluate our proposed lack of distortions to the
target source scale, we calculated both individual and global
transitivity measures of the preference ratings. Preference rat-
ings that obey transitivity indicate that the scale is understood
by participants and unidimensional—both desirable proper-
ties. For individual transitivity, we computed the transitivity
satisfaction rate (TSR) [10]—the fraction of stimulus triples
in which an individual participant satisfies transitivity in their
pairwise comparisons (e.g., if a participant chooses stimulus
A over B, and B over C, then we expect them to choose A
over C as well if their preferences satisfy transitivity). For
global transitivity, we computed weak, moderate, and strong
stochastic transitivity (WST, MST, SST) [10] from the empiri-
cal pairwise preference probabilities for a population. Let P̂ij

Table 1. Mean Pairwise Transitivity Statistics (N=10)
Quality Scale TSR WST MST SST

Overall Quality 0.91 0.97 0.93 0.61
Target Preservation 0.90 0.97 0.95 0.71

Supp. of Other Sources 0.92 0.99 0.94 0.60
Absence of Artif. Noises 0.91 0.99 0.98 0.71
Lack of Dist. to Target 0.93 1.00 0.99 0.73

be the empirical probability that audio stimuli ai was chosen
over aj . When P̂ij ≥ 0.5 and P̂jk ≥ 0.5, then WST is satis-
fied if P̂ik ≥ 0.5, MST is satisfied if P̂ik ≥ min(P̂ij , P̂jk),
and SST is satisfied if P̂ik ≥ max(P̂ij , P̂jk). In Table 1, we
see that lack of distortions to target had the highest mean sat-
isfaction rates for all transitivity measures. This highlights the
importance of scale clarity to participants and also suggests
that lack of distortions to the target source should replace
preservation of the target source and absence of additional
artificial noises.

4. CONCLUSION

In this work, we evaluated a crowdsourced pairwise com-
parison listening test for source separation evaluation. Our
previous work [1] established that we could crowdsource a
MUSHRA-like multi-stimulus listening test on the web and
obtain scores comparable to a lab-based MUSHRA listen-
ing test. However, such multi-stimulus tests are limited to
12 stimuli or less and require ground-truth reference stim-
uli. Pairwise-comparison tests do not have these limitations.
Therefore, we built on our previous work and crowdsourced a
pairwise-comparison listening test. We estimated scores from
the pairwise-comparison test using a Thurstone model, and
then we compared these scores to the scores obtained in both
web-based and lab-based multi-stimulus listening tests. The
results for the pairwise-comparison listening tests establish
that crowdsourced pairwise-comparison tests can also pro-
duce results similar to lab-based MUSHRA and can there-
fore be used when MUSHRA/MUSHRA-like multi-stimulus
tests are not appropriate (e.g., when there isn’t a reference, or
there are more than 12 stimuli, etc.). However, if testing 12 or
fewer stimuli, MUSHRA/MUSHRA-like multi-stimulus tests
are preferred since they produce more discriminative scores
given equal numbers of test participants. While we evaluated
this listening test on the task of source separation evaluation,
we believe it could generalize to the evaluation of other audio
tasks which have differences in stimuli of a similar magni-
tude. Lastly, we showed the importance of clarity of qual-
ity scale definition when using novice crowdsourced partici-
pants. We hope that the results of this work will encourage
researchers to not rely on poor automated measures of audio
quality and to instead evaluate their algorithms using the con-
sumers of their algorithms: the listeners.
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