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Figure 1. (First) A time-frequency display of sound depicting recorded speech mixed with a cell phone (horizontal lines) ringing in the background. 
(Second) Using ISSE, a user can separate distinct sound sources by roughly painting on time-frequency displays. Color is used to denote sound source 
and opacity is used as a confidence level. (Third) Once separated, fine-tuning is performed by painting on intermediate separation estimates or further 
painting on the input. Painting on one output track at a particular point pushes the sound into the other track(s) in an intelligent way. (Fourth) The 
final separated output recordings. 

ABSTRACT 
Traditional audio editing tools do not facilitate the task of sep­
arating a single mixture recording (e.g. pop song) into its re­
spective sources (e.g. drums, vocal, etc.). Such ability, how­
ever, would be very useful for a wide variety of audio appli­
cations such as music remixing, audio denoising, and audio-
based forensics. To address this issue, we present ISSE–an 
interactive source separation editor. ISSE is a new open-
source, freely available, and cross-platform audio editing tool 
that enables a user to perform source separation by painting 
on time-frequency visualizations of sound, resulting in an in­
teractive machine learning system. The system brings to life 
our previously proposed interaction paradigm and separation 
algorithm that learns from user-feedback to perform separa­
tion. For evaluation, we conducted user studies and compared 
results between inexperienced and expert users. For a variety 
of real-world tasks, we found that inexperienced users can 
achieve good separation quality with minimal instruction and 
expert users can achieve state-of-the-art separation quality. 
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INTRODUCTION 
Over the last several decades, audio editing, processing, and 
production has been revolutionized by digital editing soft­
ware and the drastic decrease in the cost of modern record­
ing equipment. In conjunction with digital audio effects such 
as compression, frequency equalization, pitch-shifting, time-
stretching, and reverberation, this technology has greatly 
improved a user’s ability to edit, process, and manipulate 
recorded sound. This increased ability has had far reaching 
consequences towards the aesthetic and artistic nature of mu­
sic creation and is the underlying motivation of this work. 

One of the single greatest advancements arose from the 
advent of the graphical user interface and interactive dis­
plays of sound. Typically, interactive displays visualize the 
time-domain waveform of a sound because it is simple and 
straightforward to implement from the perspective of the soft­
ware engineer. When more informative displays are required, 
time-frequency visualizations can be used as shown in Fig. 1. 

Such displays allow users to easily visualize, zoom, scroll, 
playback, and select regions of a recording all within a highly 
interactive feedback loop. This high degree of interactivity 
promotes and nourishes content creation in ways previously 
impossible, particularly in regard to the notion of selection. 
Selection or the ability to carefully choose a specific object 
(e.g. a snare drum) within a collection or sequence of objects 
(e.g. drum set recording) is central to a user’s ability to ma­
nipulate, process, and control recorded sound. Once audio 
objects are selected, any number of actions can be performed 
such as copying, pasting, or deleting. 

Traditional audio editing software, however, typically does 
not allow a user to independently edit multiple sound sources 
(e.g. drums, vocals, etc.) that occur simultaneously within a 
single recording (e.g. pop song). To perform this task, the 
single mixture recording must be separated into its respective 
sources. This process is referred to as single-channel source 
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separation and is useful for wide variety of music- and audio-
related tasks. These tasks include music remixing, where a 
user might want to extract only the vocals from one song and 
play it with the instrumental track of another; and audio de-
noising and forensics, where a user might want to remove 
background noise from recorded speech. In general, how­
ever, source separation is a technically very challenging prob­
lem, given the superposition property of sound as well as the 
large amplitude, time, and frequency variations of individual 
sources. 

To meet this challenge, a significant research effort has com­
menced over the past several decades to develop new algo­
rithms and methodologies for single-channel source separa­
tion. One approach in more recent editing tools is to allow se­
lection capabilities on time-frequency displays of sound such 
Ircam’s AudioSculpt [3], Melodyne, Adobe Audition, Audio 
Brush [4], Izotope’s RX, and Sony’s Spectral Layers. In some 
cases, these tools allow good-quality automatic separation, 
but, in many cases, tedious manual selection is required. This 
selection needs to be precise and requires significant work on 
behalf of the end-user, limiting the separation quality. 

Alternatively, one of the most promising approaches for 
source separation found in the research community is that of 
non-negative matrix factorization (NMF) [21, 31, 39, 12] and 
its probabilistic latent variable model counterparts (PLCA) 
[26, 33]. These methods learn individual sound models from 
spectrogram data or equivalently the short-time Fourier trans­
form (STFT) magnitude of an audio signal. A given model 
consists of a set of prototypical frequency components, which 
are inferred from data and used to explain and separate an un­
known mixture sound. 

In many cases, NMF/PLCA-based methods can achieve high-
quality separation results when isolated, training recordings 
are used to learn the individual sound models [34]. They also 
offer several key benefits compared to alternative methods in­
cluding the ability to “learn” from data and the ability to ex­
plicitly model sound as a mixture. These techniques, how­
ever, perform poorly when no isolated training data is given 
and do not allow users to correct for unsatisfactory results. 

In our recent work [5, 6], we proposed a combination of both 
manual and NMF/PLCA-based methods. The method oper­
ates by allowing a user to separate a single- or stereo-channel 
audio recording into its respective sources by roughly paint­
ing on time-frequency visualizations of sound as shown in 
Fig. 1. The technique incorporates painting annotations into 
NMF/PLCA-based techniques in a way that small, roughly-
placed annotations can globally improve separation quality. 
The method is also extendable in that it can operate with the 
use of isolated training data [6] or without [5]. Between these 
works, however, only minimal evaluation was performed and 
only a minimally functional proprietary Matlab interface was 
developed, significantly limiting the achievable separation 
quality, the usefulness of the method, and further study on 
interactive source separation. Also note, these works are 
related to our more recent work of using user-feedback for 
pitch-based separation [7], which uses a different more lim­

ited algorithm (88 pre-defined sound sources) and modified 
interaction (time-domain displays). 

As a result, we build upon this prior work and proposed a new 
interactive software system called ISSE–an interactive source 
separation editor. ISSE is a free, open-source project that em­
bodies our past work within a carefully designed real-life sys­
tem. We outline our newly developed software system, dis­
cuss and frame the topic of source separation in the context of 
human-computer interaction (HCI) and interactive machine 
learning (IML), examine the interaction paradigm and inter­
active analogies, outline the employed separation algorithm, 
and then discuss user studies and further expert evaluation. 
Collectively, we hope that this more clearly demonstrates the 
usefulness of incorporating HCI ideas into multimedia pro­
cessing problems such as source separation, where the use of 
user-feedback can be extremely beneficial. 

RELATED WORK 
In addition to the audio editing tools listed above, there are 
several related prior works on the topic of user-guided source 
separation. In the work of Smaragdis and Mysore [30, 32], a 
user is employed to sing or hum an input query signal. Both 
the frequency content and timing information of the query 
signal are then used to select or separate a single source from 
a mixture. In the work of Ozerov et al. [24, 25], user-
annotated time activations from an input mixture recording 
are used to inform a separation algorithm. In Durrieu et al. 
[9], a user is asked to annotate the fundamental frequency on 
a pitch-based display to perform vocal (or related) separation. 
In the work of Lef ̀evre et al. [22], a user is asked to annotate 
binary time-frequency patches, which are used with the inten­
tion of training an automatic, user-free system. 

While promising, these methods still leave room for improve­
ment for several reasons. Most notably, general-purpose, 
high-quality separation is always an issue for all methods, in­
cluding the proposed approach. Single-channel source sepa­
ration is an underdetermined mathematical problem and does 
not have a single, straightforward, optimal solution. As a re­
sult, nearly all algorithms are customized for various appli­
cations and can break down when applied to unforeseen sit­
uations. To mitigate this problem, we believe it is beneficial 
to embrace this fact and incorporate an ability for a user to 
correct for mistakes in the separation output. 

In other words, past user-guided approaches do not lever­
age end-users to their full potential. In particular, they do 
not stress iterative, user-feedback between the separation al­
gorithm and the end-user to improve separation quality over 
time. This is something that we are acutely interested in and 
believe is immensely beneficial. 

Our interest and belief in user-feedback stems from the 
emerging intersection between HCI and machine learning 
(ML) or interactive machine learning (IML), and its recent 
success across various domains. Early works citing success 
of IML include Fails and Olsen [11], who leverage user-
feedback for image classification; and Cohn et al. [8], who 
use IML for document clustering and scientific discovery. 



More recent works that are also encouraging include Stumpf 
et al. [36], who discuss the idea of IML in a broad ML 
context; Talbot et al. [37], who use an interactive visualiza­
tion tool for training multiple classifiers; Fogarty et al. [14], 
who leverage IML for image search; Fiebrink [13], who uses 
IML for musical instrument design; Settles [28], who lever­
ages IML for natural language processing tasks in conjunc­
tion with active learning; and Amershi et al., who leverage 
IML for aiding network alarm triage [1]. Given this prior 
work, we now outline our proposed software system. 

OVERVIEW 
ISSE is a free, open-source interactive source separation 
editor that embodies our previously proposed interaction 
paradigm and algorithms for single-channel separation [5, 6]. 
The proposed software system allows a user to separate a sin­
gle recording of a mixture of sounds into two sources using 
drawing and painting-like tools and is useful for a wide vari­
ety of music- and audio-related tasks. 

The primary design goals of the project are to 1) provide a 
professional-level audio editing tool for recording engineers, 
musicians, and similar users to perform source separation for 
applications such as music remixing and audio denoising 2) 
employ drawing and painting-like tools to control the sepa­
ration process in an intuitive, precise, and deliberate manner 
3) emphasize the use of interactive user-feedback to improve 
separation quality over time in an effort to remove the burden 
placed on the separation algorithm to be perfect the first time 
4) achieve high-quality separation results, even if a signifi­
cant effort is required on behalf of the user and 5) evaluate 
the work with inexperienced and expert users alike. 

INTERACTION 
To separate a single-channel recording with ISSE, a user is 
allowed to annotate or paint on a time-frequency or spectro­
gram display of a mixture sound as shown in Fig. 1 (second). 
As opposed to exactly annotating each pixel of the image, 
however, a user is instructed to roughly paint on salient, time, 
frequency, or time-frequency regions that appear to corre­
spond to one sound or another, following past work [5, 6]. 
Color is used to denote sound source (e.g. vocals, guitar, etc.) 
and opacity is used as a measure of confidence or strength, 
allowing a degree of robustness to imprecise annotations. 

Given the annotations, our system then performs an initial 
separation and allows the user to listen to the separated out­
puts as shown in Fig. 1 (third). If the results are unsatisfac­
tory, the user can then annotate errors in the output estimates 
or further annotate the input, and iteratively re-run the process 
in a quick, interactive manner (i.e. seconds) until a desired re­
sult is achieved as shown in Fig. 1 (fourth). As depicted, we 
focus on the task of separating one sound into two. To sepa­
rate more than two sources at a time (e.g. drums + vocals + 
guitar), the complete separation process can be repeated sev­
eral times (e.g. first separate drums from vocals + guitar, then 
separate vocals from guitar). 

This interaction paradigm can be viewed via two screenshots 
of our current user interface. The screenshots include the 
Multi Paint View in Fig. 2 and Single Paint View in Fig. 3. 

Figure 2. The Multi Paint View. In this view, a user can view, zoom, 
listen and paint on both the input and outputs of the separation process. 

Figure 3. The Single Paint View (w/zoomed inset). In this view, a user 
can view, zoom, listen, and paint on a single selected track. 

In the Multi Paint View, a user can listen, view, zoom, and 
paint on the input mixture recording (top track) and the sep­
arated outputs (middle and bottom track). In the Single Paint 
View, a user can listen, view, zoom, and paint on a single, se­
lected track on a larger display (either the input or one of the 
two outputs). These two views encompass the central func­
tionality of ISSE, along with the Settings View (not shown), 
which allows a user to control specific parameters of the sep­
aration algorithm. All three main views are tabbed for easy 
navigation. 

Analogies 
When considering the employed interaction, it is useful to 
think about two constructive analogies from related media 
content creation paradigms. 

In the first analogy, we can compare our proposed interaction 
to the process of extracting a layer (foreground, background, 
or other type of layer) in an image editing program. The pro­
cess of extracting an image layer begins by a user defining 
what they wish to separate, taking a selection tool, clicking 
on the background a few times, and then clicking extract. If 
the layer is not completely separated, the process is repeated 
over and over until a desirable result is achieved. This iter­
ative process, juxtaposed with smart or intelligent selection 
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Figure 4. (Top) To extract a layer of an image, a user will separate small 
portions of the layer at a time in an iterative fashion to achieve the final, 
polished result (image license [15]). (Bottom) To sculpt a 3D animated 
character, a user will begin with primitive shapes, and then gradually 
add and subtract material to sculpt the geometric mesh. Only when the 
feedback loop between the user’s action and the computer’s response is 
sufficiently fast can a user effectively virtually sculpt. 

tools, can be extremely powerful as demonstrated in the work 
of Rother et al. [27] and is something we strive towards for 
source separation. 

For the case of source separation, the “images” are time-
frequency representations of sound. These sound images, 
however, are very different from natural images, making the 
use of standard computer vision-based methods very difficult. 
In particular, the images consist of objects or sources that can 
have physically disjoint parts caused by a source turning on 
and off and/or by harmonics (i.e. energy at integer multi­
ples of the fundamental frequency). Even worse, our images 
have transparency due to the superposition property of sound, 
which implies that multiple sound sources can be present at 
any given time-frequency point. As a result, we must estimate 
the proportion of each sound source per pixel from a mixture 
spectrogram. 

In the second analogy, we can liken our proposed interac­
tion to three-dimensional sculpting. In the process of three-
dimensional sculpting, such as those of Maya or Blender, a 
user will typically take primitive geometric shapes, carefully 
add and subtract material (using manual or more intelligent 
tools), and over the course of many hours, create their fin­
ished product. This iterative environment, which allows a 
user to push, pull, and generally manipulate content, is some­
thing we again strive towards with our proposed interaction 
and believe is critical in achieving high-quality separation re­
sults. 

Interactive User-Feedback 
To further comment on the iterative process of the system, we 
outline the block diagram of the interactive feedback loop in 
Fig. 5 and discuss its essential benefits below. 

The first benefit of the user-feedback of our system is that 
it significantly improves separation quality. Without user-

User Correction!

Learning 
Algorithm!

Unlabeled!
Data!

Feedback to User!

Figure 5. Interactive machine learning feedback loop. 

guidance, the quality of the results would either be severely 
degraded [5] or require the use of isolated training data to 
perform separation and most likely still have inferior perfor­
mance [6]. 

Secondly, a priori, the problem of knowing which sources 
to separate is ill-defined because there are multiple ways of 
separating a given mixture sound. For example, given a pop 
song, a user might want to extract the vocals from the back­
ground, rather than separate each instrument. To get around 
this issue, some systems pre-define which sources are to be 
separated, as is the case in speech denoising and pitched-
based separation. In our case, however, we allow a user to 
define the concept of what a source is (e.g. source = drums, 
drums + bass, etc.) simply by annotating the correct regions 
of the mixture spectrogram, making the technique more gen­
eral. 

Thirdly, the ability to iterate removes the burden placed on 
the separation algorithm to be perfect the first time–a very 
strong assumption that is rarely achieved by automatic meth­
ods. This places a portion of the responsibility to achieve 
high-quality results back to the user. For the case of pro­
fessional level users for which we are interested in, this is 
acceptable and in many cases advantageous. 

Fourthly, the feedback loop allows a user to both learn how to 
interpret spectrogram displays and to understand how the sep­
aration algorithm reacts to their painting annotations. With 
this knowledge, users can then further improve how they op­
erate the system and more accurately map auditory stimuli to 
visual feedback. Given that sound is a perceptual domain and 
our method of interaction is indirect (i.e. painting on visu­
alizations of sound), this is critical. In a sense, human users 
must also learn and adjust their behavior alongside the sep­
aration algorithm to accomplish something neither could do 
independently. 

Lastly, the use of feedback allows us to constantly evaluate 
the separation quality and validate the results are improving. 
A user’s approval or disapproval is then used to update our 
optimization objective. In essence, the procedure indirectly 
incorporates a perceptual model into our separation algorithm 
without an explicit model of human hearing. 



SEPARATION ALGORITHM 
To algorithmically perform source separation, we follow our 
previously proposed algorithms [5, 6], which are based on 
probabilistic latent component analysis (PLCA) [26, 33]. We 
review both methods below. 

Basic Model 
Probabilistic latent component analysis is a simple probabilis­
tic latent variable model used for a variety of audio analysis 
and separation tasks that involve mixture sounds. It is closely 
related to probabilistic latent semantic indexing/analysis [20], 
non-negative matrix factorization (NMF) [21, 31], and can be 
considered a generative time-varying mixture model. 

Intuitively, PLCA is a data-driven approach that approximates 
audio spectrogram data X ∈ RN×T as a linear combination + 
of prototypically frequency components over time. Mathe­
matically, PLCA models an audio spectrogram X via  

P (f, t) = P (z)P (f |z)P (t|z), (1) 
z 

where f and t are observed discrete random variables, z is a 
latent discrete random variable, P (f , t) is a two-dimensional 
multinomial probability distribution, P (f |z) is a multinomial 
distribution representing the prototypical frequency compo­
nents, and P (t|z) and P (z) are multinomial distributions that 
represent the volume of the frequency components. 

When used to model a mixture sound and eventually perform 
separation, non-overlapping groups of frequency components 
are first associated with each sound source and then estimated 
using an iterative expectation-maximization (EM) optimiza­
tion procedure. Once estimated, the parameters can be used to 
compute the proportion of each source at each time-frequency 
point. These results are used to compute time-varying fil­
ters that are applied to the mixture signal to finally generate 
the separated sources (following standard practice and other 
Weiner filtering-based approaches). 

This can be seen visually in Fig. 6, which depicts the use 
of PLCA to model a spectrogram of a piano playing “Mary 
Had a Little Lamb.” In this case, three frequency compo­
nents are used to model the three pitches (E, D, and C) of the 
two-measure passage. Notice how the frequency components 
P (f |z) ideally capture the harmonic structure of the pitches 
and the corresponding elements of P (t|z) and P (z) capture 
the timing and amplitude levels of each note. This approach 
allows us to perform a type of clustering that discovers re­
peating spectral patterns of a given sound and decouple the 
frequency content of a sound from the volume level. 

In nearly all real-word situations, however, such an ideal seg­
mentation almost never occurs, requiring the use of super­
vised or semi-supervised PLCA-based methods. These meth­
ods work as described above, but estimate the frequency com­
ponents of each source independently given isolated training 
data. The individual models are then combined to form a 
complete model and used to estimate the contribution of each 
source within a mixture sound. Once we know the propor­
tions of each source, we can then reconstruct each source in­
dependently and perform separation as before. 
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Figure 6. An illustration of using PLCA to model a spectrogram of a 
piano playing “Mary Had A Little Lamb.” 

User-Feedback As Optimization Constraints 
To remove the requirement of isolated training data, user-
feedback is incorporated into this separation procedure by 
leveraging the painting annotations as discussed above. This 
is done by adding (weak) supplementary constraints or regu­
larization parameters into the EM optimization objective. The 
painting annotations are then appropriately mapped to control 
the weighting of the parameters to encourage or discourage 
one group of frequency components to explain a given time-
frequency point of the mixture sound. Once the regularization 
parameters are updated, the entire separation procedure is re­
estimated to best fit the data and incorporate the user-defined 
constraints. 

In this way, the annotations placed at one time-frequency 
point can propagate throughout the recording via the PLCA-
based clustering procedure and have a global effect on the 
separation estimation. This minimizes the need for a com­
plete set of annotations as required by many past approaches. 
The specific type of constraint used is a form of posterior reg­
ularization [18]. Overall, the entire procedure can be thought 
of as a user-guided interactive clustering process and is, very 
generally speaking, similar to the work of Cohn et al. [8], 
Settles [28], and others. 

When employed in practice, the added regularization pa­
rameters are initially set to zero with clear painting annota­
tions. When the regularization parameters are zero, the pos­
terior regularized PLCA algorithm mathematically reduces to 
a standard unsupervised PLCA algorithm. Once a user starts 
to paint on the displays, the regularization parameters are re-
weighted based on the opacity and color of the paintbrush. 
All annotations across all tracks for a given sound source 
are rendered into a single matrix (i.e. two matrices for two 
sources). The annotation matrices for all sources are then 
used to update the separation estimates. The entire estima­
tion process is updated after each paintbrush stroke (mouse up 
event) or alternatively trigger from a button click. For short 
duration audio recordings, this results in a very speedy and 
efficient feedback loop and allows a user to quickly see the 
effect of their annotations. 



USER STUDIES 
To test the proposed system, we designed our evaluation 
with the following questions in mind: Can inexperienced 
users with a music and audio background use our software 
to achieve a reasonable level of separation quality? How does 
this separation quality compare to the quality achieved by ex­
perienced, expert users of the system? And what is the maxi­
mum achievable separation quality of the system? 

Methodology 
To answer these questions, we first studied how inexperienced 
users (with music and audio backgrounds) performed on a 
variety of separation tasks using the proposed system. The 
specifics of the study are described below and were approved 
through standard institutional review board procedure. 

Participants 
We recruited 10 participants from an email listserv from the 
first author’s academic center with the incentive of a $25 gift 
card. The participants had significant levels of musical train­
ing, audio editing skills, and knowledge of spectrogram dis­
plays of sound, but no experience with our system. The level 
of formal musical training varied between 0-30 years and av­
eraged ≈ 12 years. The level of music production varied 
between 1-15 years and averaged ≈ 4 years. And finally, 
the level of experience with spectrogram displays ranged be­

1tween -10 years and averaged ≈ 4 years. In addition to 2 
the 10 participants, an expert user (the first author) was also 
tested for comparison. The expert user had 10 years of music 
production and editing background and hundreds of hours of 
experience working and designing the system. 

Training 
To train each participant, we presented him or her with a five-
minute introductory video. The video outlined the general 
functionality of the system and provided three demonstrative 
examples. Following the video, a standardized description of 
what would be required of the user was read aloud. This was 
followed by a five-minute question-and-answer section. 

Tasks 
Once the training was complete, five real-world separation 
tasks were given to each user. Each of the five tasks required 
the user to separate a mixture recording of two sounds into 
its respective sources over the course of ten minutes. At the 
end of each task, the separation results were saved and stored 
for later analysis. At any time, a user was allowed to ask 
questions on the functionality of the system (mechanics of 
buttons, sliders, etc.). The mixture sounds used for each task 
were arranged in order of difficulty and include: (1) a cell 
phone + speech, (2) ambulance siren + speech, (3) bass guitar 
+ drums, (4) cough + orchestra, and (5) vocals + guitar. 

Debrief 
Once the tasks were completed, each user was given a ques­
tionnaire and debriefing survey. The survey was used to 
gauge the difficulty and satisfaction level of each task on a 
scale of one to five and record users’ overall experience us­
ing the system. Questions included: 1) Did you feel like your 
ability to separate sounds improved over time? 2) What was 

the most difficult aspect of the system? 3) What was the most 
fun aspect of the system? 4) Additional comments? 

Scoring Success 
To measure the separation quality achieved by our partici­
pants and compare the result to those of an expert user, we 
used the standard BSS-EVAL suite of objective source sepa­
ration evaluation metrics [38]. The suite includes three sepa­
rate measurements including the Source-to-Interference Ra­
tio (SIR), Source-to-Artifacts Ratio (SAR), and Source-to-
Distortion Ratio (SDR). The SIR measures the level of sup­
pression of the unwanted sources, the SAR measures the level 
of artifacts introduced by the separation process, and the SDR 
gives an average measure of separation quality that consid­
ers both the suppression of the unwanted sources and level 
of artifacts introduced by the separation algorithm compared 
to ground truth. All three of the metrics are statistical mea­
sures and are computed by comparing the estimated sepa­
rated source signals to the original unmixed recordings used 
to compose the given mixture sound. They have units of deci­
bels (dB) and consider higher values to be better. 

To make it easier to compare separation quality across differ­
ent tasks, we then normalize these metrics for a given task 
by computing the separation quality from an ideal soft mask 
algorithm (discussed in [5] and many others) by subtracting 
it off. The ideal soft mask results provide us with a level of 
near perfect separation quality and are typically considered 
to be an empirical pseudo upper bound of source separation 
performance for NMF/PLCA algorithms, although this is not 
always the case (it is possible for other methods to perform 
better). We do this because the BSS-EVAL metrics do not 
natively provide an upper bound score for separation quality. 

In addition to this empirical pseudo upper bound, we also 
provide a pseudo lower bound for comparison by computing 
the separation results given no interaction. Both benchmarks 
help us get a better idea of how well our participants per­
formed. Note, it is also possible for a user to perform worse 
than the lower bound as a result of ill-placed (e.g. very large, 
opaque, or discontinuous) annotations and similar issues that 
can cause audible artifacts. 

Results 
The results of the user study are presented in two forms: using 
the BSS-EVAL metrics and via user responses. 

Objective Separation Quality 
The computed SDR, SAR, and SIR results for each of par-
ticipant/task are shown in Fig. 7, Fig. 8, and Fig. 9 respec­
tively. The results for each participant, the participant av­
erage, and the participant standard deviation, are reported 
alongside the results for the expert user, ground truth method, 
and no-interaction method. 

Out of these plots, the most notable is Fig. 7, which displays 
an overall measure of separation quality. From this figure, 
we can view several interesting observations. Firstly, as ex­
pected, the expert user outperformed nearly all inexperienced 
users in all tasks. What is unexpected, however, is that in 
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Figure 7. Normalized SDR results. Inexperienced-user scores 
(black, dots/numbers), inexperienced-user average scores (black, star), 
inexperienced-user one standard deviation (black, line), expert-user 
scores (blue, x), ideal scores (red, plus), and no-interaction scores (ma­
genta, square) are shown for each task. 
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Figure 8. Normalized SIR results. Inexperienced-user scores 
(black, dots/numbers), inexperienced-user average scores (black, star), 
inexperienced-user one standard deviation (black, line), expert-user 
scores (blue, x), ideal scores (red, plus), and no-interaction scores (ma­
genta, square) are shown for each task. 

more than one instance, a select few inexperienced users ac­
tually outperformed the expert. Given our expert user evalu­
ation results (below), this is a very promising result. 

Secondly, there are four tasks (1, 2, 3, and 4) in which one or 
more participants achieved separation results within 5dB of 
the ideal result. While this benchmark is difficult to translate 
into perceptual quality, this type of performance is similar to 
state-of-the-art separation quality reported in the community-
based signal separation evaluation campaign discussed be­
low, albeit for easier tasks. And thirdly, in four out of five 
tasks, the average inexperienced user outperformed the no-
interaction baseline by over 5dB and in two cases outper­
formed the baseline by nearly 15dB or more. 

Similar phenomena are found in Fig. 8 and Fig. 9, and to­
gether these results give us an indication that inexperienced 
users can achieve good separation quality with minimal in­
struction. It should also be noted that in Fig. 9, the SAR 
without interaction is occasionally better than the user scores. 
This is because the results without interaction are almost 
identical to the input (no separation) resulting in minimal ar­
tifacts. The correspondingly low SIR scores reflect this fact. 

User Responses 
In addition to the evaluation discussed above, it is also inter­
esting to look at the results from the debriefing surveys. We 
first discuss the participants’ rating of difficulty and satisfac-

Figure 9. Normalized SAR results. Inexperienced-user scores 
(black, dots/numbers), inexperienced-user average scores (black, star), 
inexperienced-user one standard deviation (black, line), expert-user 
scores (blue, x), ideal scores (red, plus), and no-interaction scores (ma­
genta, square) are shown for each task. 

tion for each task in Fig. 10 and Fig. 11 and then address the 
follow-up questions. 

In Fig. 10, we can see a steep increase in the perceived dif­
ficulty of each task over the course of the entire experiment 
as intended by design. When we compare this to the separa­
tion quality discussed above, we see that while the perceived 
difficulty of each task increases, the average SDR stays more 
or less the same. This suggests that the average user was able 
improve their ability to separate sounds over the course of 
the study and additionally, this coincides with the fact that 
all users self-reported that their ability to separate sounds im­
proved. Both observations further suggest that inexperienced 
users can learn to use the system in a relatively short amount 
of time. 

In Fig. 11, we see users’ satisfaction per task. For the first 
two easier tasks, most users gave a satisfaction rating of four 
out of five. For the more difficult tasks, user satisfaction de­
creased to three out of five. This loosely suggests that the 
user-reported difficulty rating is correlated to user satisfac­
tion. 

Regarding the most difficult aspects of the system, nearly all 
users commented on the task of associating a sound to its 
visualization, as expected. Regarding the most fun aspects 
of the system, participants commented: “When it worked!”, 
“Interactively being able to control the separation,” “This 
was not possible with the tools of the past!”, and “The real­
timeness of the software made everything fun and engaging.” 

Regarding additional comments, participants stated: “This 
would be a useful teaching tool!”, “real great work, some in­
sight on what is actually happening may be useful for opti­
mizing user activity,” “Include progress of rendering in each 
window,” and “This is awesome.” In general, we found the 
users’ responses to be very positive. 

ADDITIONAL EVALUATION 
In addition to the user studies above, we further tested our 
expert user and submitted separation results computed by the 
expert to the fourth community-based signal separation evalu­
ation (SiSEC) campaign [29]. Submitted categories included 
professionally produced music recordings and two-channel 
mixtures of speech and real-world background noise. 
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Figure 10. Reported user difficulty (black, dots/number) for each of the 
five separation tasks, along side the average (black, star) and standard 
deviation rated difficulty (black, line). Notice how the average difficulty 
rating increases for each task. 
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Figure 11. Reported user satisfaction (black, dots/number) for each of 
the five separation tasks, along side the average (black, star) and stan­
dard deviation rated satisfaction (black, line). 

For the task of professionally produced music recordings, 
which we are more acutely interested in, the evaluation in­
volved separating a test set of nine pop/rock music record­
ings. Seven out of nine recordings are short 20-30 second 
snippets. Two out of nine recordings are full-length versions 
of two of the shorter recordings. Each recording consists of 2­
4 sources such as vocals, guitar, bass, and piano. We submit­
ted results to all sources of all short duration clips, resulting 
in 24 subtasks. 

We compared our results to the 15 other submissions using 
the standard BSS-EVAL and PEASS scores [10]. The PEASS 
scores attempt to measure the perceived quality of the esti­
mated source signal using four individual measures, including 
the Overall Perceptual Score (OPS), the Interference-related 
Perceptual Score (IPS), the Artifact-related Perceptual Score 
(APS), and the Target-related Perceptual Score (TPS). The 
OPS, IPS, and APS are analogous to the SDR, SIR, and SAR, 
respectively, and the TPS corresponds to something called the 
image-to-spatial distortion ratio (ISR), which measures spa­
tialization accuracy. In the end, we achieved: highest SDR 
16/24 times (next closest algorithm 4/24), highest SAR 12/24 
times (next closest 8/24), highest SIR 17/24 times (next clos­
est 2/24), highest ISR 11/24 times (next closest 6/24), the 
highest OPS 9/24 times (next closest 5/24), and the highest 
average overall SDR, SAR, SIR, ISR, and OPS. Please also 
see the summary of Ono et al. [23]. All results and sound 
examples from the evaluation are available online [29]. 

Audio and Video Demonstrations 
Furthermore, to demonstrate the system, we posted an in­
troductory demonstration video and several sound examples. 
Examples include separation of vocals + guitar, drums + bass, 
Neil Armstrong’s speech + noise, piano chords + wrong note, 
orchestra + cough, phone ring + speech, and vocals + drums 
+ bass + other. 

We also produced several short “mini-mashups” to show how 
the system can be useful for music production and remixing. 
To make the mini-mashups, we used ISSE to perform vocal 
separation on several popular songs (20-30 second clips of 
about 8 measures of music per song). We then remixed the 
separated vocals with new instrumental music. 

IMPLEMENTATION DETAILS 
The proposed system is written in the C++ programing lan­
guage. It is built for OSX, Windows, and Linux operating 
systems (32 and 64-bit), and licensed under the GNU Gen­
eral Public License Version 3 [16]. Features include audio 
playback/transport control, spectrogram viewing with zoom 
controls, paintbrush tools, undo/redo, file saving/loading, 
mute/solo/volume control, and a fully multithreaded user in­
terface and processing architecture. Current painting tools 
include time select, frequency select, box select, infinity time 
select (used to select isolated training data if available), and 
a spray-paint brush. In addition to the application and source 
code, a user forum, wiki, and user manual are also available to 
encourage both user and developer community involvement. 

Development Process 
The current implementation is the result of several alpha ver­
sions of the software that were released starting in July 2013. 
Using feedback from the user study, the user forum, and the 
authors’ experience, we updated and improved the initial in­
terface design. Improvements since the initial release include: 
cross-platform compatibility, adding a processing progress 
bar (without this several users became frustrated when the 
separated sources would updated unexpectedly), added the 
Single Paint View and the tabbed display, clarified and up­
dated the icons, added stereo processing capabilities, sepa­
rated the audio transport buttons from the painting and dis­
play controls, and consolidated and reorganized the paint 
brush controls. Since the initial release, tens of community 
users have been active in the user forum and, to date, the ap­
plication has been downloaded over 8,000+ times across 80+ 
different countries. 

Third Party Libraries 
The software is heavily dependent on several third-party 
open-source libraries including JUCE [35], Eigen [19], and 
FFTW [17]. JUCE, or Jules Utility Class Extensions, is a 
large, open source, cross-platform, C++ class library and is 
used for all user interface and audio playback functionality. 
Eigen is a high-performance, open-source, cross-platform, 
C++ template library for linear algebra, matrices, vectors, 
solvers, and related algorithms and is used for the core sig­
nal processing/machine learning-based separation algorithm. 
FFTW is an open-source, cross-platform, C subroutine li­
brary for computing discrete Fourier transforms and is used 

http://isse.sourceforge.net/
http://isse.sourceforge.net/demos.html
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Figure 12. Computation Speed. Overall time (black, x, solid line), PLCA 
time (red, circle, dash-dot line), STFT time (blue, plus, dashed line) 
and user studies tasks (black, star, numbers) are shown for high qual­
ity (slower lines) and low-quality (faster lines) audio sample rate. 

for all fast Fourier transform operations needed for both the 
spectrogram displays and the separation algorithm. 

Computation Speed 
Finally, because of our emphasis on interactivity, we briefly 
comment on the computational speed of our proposed ap­
proach. Fig. 12 depicts the time it takes our system to react 
to a user annotation, re-estimate the separation results, and 
present the results back to the user. We call this a single iter­
ation or execution of the algorithm (note, the parameter esti­
mation is also an iterative procedure). Results are shown as a 
function of the input file length using a high-quality (44.1kHz 
sample rate) and low-quality (16kHz sample rate) setting of 
the algorithm. We also plot the file lengths and computation 
time of the five tasks of our user study. 

As shown, our algorithm is unfortunately linearly dependent 
on the input file length. Even though our algorithm is faster 
than real-time, this limits the degree of interactively for files 
longer than 20-30 seconds. Fortunately, however, the recent 
work of Battenberg and Wessel [2] shows that graphics pro­
cessing unit (GPU) implementations of similar separation al­
gorithms can increase computation speed over 30x, given the 
highly parallelizable nature of PLCA-based algorithms. This 
could potentially allow a much higher-degree of interactivity 
in future implementations. 

In addition to the computation speed for a single complete 
iteration of our algorithm, it is also interesting to note how 
many complete iterations are necessary for an expert user to 
perform typical separation tasks (in our user study, we ar­
tificially limited the time allowed per separation task). For 
both the SiSEC submissions and the additional produced au­
dio demonstrations, it took us anywhere from 10-60 minutes 
per task. We should also note that, in general, the complete 
separation time is highly dependent on the source material. 
Some tasks can take a few minutes, while others can take 
several hours. 

Within this time frame, the separation algorithm is comput­
ing (almost) continuously in the background. As a result, the 
separation algorithm is executed hundreds or even thousands 
of times to adequately perform high-quality separation. This 
fact, in itself, is a testament to the benefit of iteration and 
user-feedback. 

CONCLUSION AND FUTURE WORK 
We have presented a new open-source, freely available, cross-
platform audio editing tool that allows a user to perform 
single-channel source separation. The software system works 
by allowing a user to provide feedback into the separa­
tion process by painting on spectrogram displays of both 
the input and output sounds of the separation process. The 
painting annotations are then used to inform a NMF/PLCA­
based separation system and iteratively improve separation 
quality as noted in past work. Evaluation and demonstra­
tions were presented for a wide variety of sounds, show­
ing promise that the system can be used in many real-world 
audio and music editing scenarios. To download the ap­
plication, code, and audio/video demonstrations, please see 
isse.sourceforge.net/. 

For future work, we hope to extend the software with a vari­
ety of features including: 1) a plugin architecture to allow for 
third-party developers to create and implement new separa­
tion algorithms without the worry of user interface develop­
ment 2) intelligent audio object selection such as smart select 
and harmonic select tools 3) GPU support for increased pro­
cessing efficiency and 4) new tools for managing the separa­
tion of multi-channel recordings as well as longer recordings. 
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